title collage
Photo of Oliver Klink

Dr. Oliver Klink,

Biophysics, University of Rostock

Curriculum Vitae

1996 – 08/2002
Studium der Biologie an der Universität Hohenheim Diplomarbeit am Institut für Physiologie: „Olfaktorische Rezeptoren von Insekten: Vergleichende Studien des OR2-Subtyps und heterologe Expression“
2003 – 2007
Promotion am Naturwissenschaftlichen Medizinischen Institut (NMI) Reutlingen/ Institut für Membranphysiologie der Universität Hohenheim, „Neuronale Modulation: Der Einfluss von Agonisten und inverser Agonisten auf das Cannabinoidsystem einer hippocampalen Primärkultur“
2007- 2010
Wissenschaftlicher Mitarbeiter am Institut für Membranphysiologie von Prof Dr. Hanke an der Universität Hohenheim. Entwicklung von Messsystemen für die Mikrogravitationsforschung für den Einsatz in Parabelflügen
Ab 10/2010
Wissenschaftlicher Mitarbeiter am Institut für Biophysik in der Arbeitsgruppe von Dr. Köster an der Universität Rostock. Mitarbeit am PoreGenic Projekt.
His Topic of Materials' Days 2011:

PoreGenic - A new tool for the analysis of intracellular potentials of adherent cells

O. Klink, C. Tautorat, U. Scheffler, W. Baumann1 and P.J. Koester  (University of Rostock, Chair of Biophysics, Gertrudenstrasse 11a, 18057 Rostock, Germany)
Automated patch-clamp setups are applied to investigate dose response relationships and target kinetics in the development of new pharmaceutical agents. Currently, these automated systems are limited to investigations of suspended single cells. Because the majority of the cells in humans, animals and plants grow adherently, we pursue the development of assays for detecting the membrane properties in adherent networks.

As a first step, we developed PoreGenic®, a novel patch-clamp system for cells adherently growing on a sensor chip with 64 micro-structured needle electrodes which are arranged in an 8×8 multi-electrode array with a pitch of 100 µm. PoreGenic® allows for the electrical cell manipulation as well as for extra- and intracellular potential measurements. We tested four types of needle electrodes of different shapes and materials with heights below 10 µm. For intracellular detection, electroporation pulses were applied to form membrane pores for the introduction of the needle electrodes into the cytoplasm. Fluorescence and scanning-electron microscopy in combination with focused ion beam preparation were used to characterize the success of electroporation. In a number of experiments, we could access the cytoplasm and detect intracellular potentials. Our current system features 16 hollow needle structures with fluidic connections for patch-clamp experiments.